
www.manaraa.com

Softw Syst Model (2016) 15:1207–1233
DOI 10.1007/s10270-015-0453-5

REGULAR PAPER

Supporting different process views through a Shared Process
Model

Jochen Küster · Hagen Völzer · Cédric Favre ·
Moisés Castelo Branco · Krzysztof Czarnecki

Received: 13 March 2014 / Revised: 30 November 2014 / Accepted: 6 January 2015 / Published online: 24 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Different stakeholders in the business process
management (BPM) life cycle benefit from having differ-
ent views onto a particular process model. Each view can
show, and offer to change, the details relevant to the particular
stakeholder, leaving out the irrelevant ones. However, intro-
ducing different views on a processmodel entails the problem
to synchronize changes in case that one view evolves. This
problem is especially relevant and challenging for views at
different abstraction levels. In this paper,wepropose aShared
Process Model that provides different stakeholder views at
different abstraction levels and synchronizes changes made
to any view. We present detailed requirements and a solution
design for the Shared Process Model. We also present an
overview of our prototypical implementation to demonstrate
the feasibility of the approach. Finally, we report on a com-
prehensive evaluation of the approach on real Business–IT
modeling scenarios.

Keywords Business process modeling · Business–IT gap ·
Model synchronization

Communicated by Dr. Pieter Van Gorp.

J. Küster
Bielefeld University of Applied Sciences, Bielefeld, Germany

H. Völzer · C. Favre
IBM Research — Zurich, Zurich, Switzerland

M. C. Branco (B) · K. Czarnecki
Generative Software Development Laboratory, University of Waterloo,
Waterloo, ON, Canada
e-mail: mcbranco@gsd.uwaterloo.ca

1 Introduction

A central point in the value proposition of BPM suites is
that a business process model can be used by different stake-
holders for different purposes in the BPM life cycle. It can
be used by a business analyst to document, analyze or com-
municate a process. Technical architects and developers can
use a process model to implement the business process on
a particular process engine. These are perhaps the two most
prominent uses of a process model, but a process model can
also be used by a business analyst to visualize monitoring
data from the live system, or by an end user of the system,
i.e., a process participant, to understand the context of his or
her participation in the process.

These different stakeholders would ideally share a single
process model to collaborate and to communicate to each
other their concerns regarding a particular business process.
For example, a business analyst and a technical architect
could negotiate process changes through the shared model.
The business analyst could initiate process changes moti-
vated by new business requirements, which can then be
immediately seen by the technical architect and form the
basis to evaluate and implement the necessary changes to
the IT system. The technical architect may revise the change
because it is not implementable in the proposed form on
the existing architecture. Vice versa, the technical architect
can also initiate and communicate process changesmotivated
from technical requirements, e.g., new security regulations,
revised performance requirements, etc. In this way, a truly
Shared Process Model can increase the agility of the enter-
prise.

This appealing vision of a single process model that is
shared between stakeholders is difficult to achieve in practice.
One practical problem is that, in some enterprises, different
stakeholders use different metamodels and/or different tools

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0453-5&domain=pdf

www.manaraa.com

1208 J. Küster et al.

to represent and maintain their version of the process model.
This problem makes it technically difficult to conceptually
share ‘the’ process model between the stakeholders (the
BPMN–BPEL roundtripping problem is a known example
[1]). This technical problem disappears with modern BPM
suites and the introduction ofBPMN 2, as this single notation
now supports modeling both business and IT-level concerns.

However, there is also an essential conceptual prob-
lem. Several existing works show that different stakehold-
ers intrinsically desire different views onto the same process
because of their different concerns and their different lev-
els of abstraction [2–6]. This is even true for parts that
all stakeholders are interested in, e.g., the main behavior
of the process. Therefore we argue that we need separate,
stakeholder-specific views of the process that are kept con-
sistentwith respect to each other. Current tools do not address
this problem. Either different stakeholders use differentmod-
els of the same process, which then quickly become inconsis-
tent, or they use the same process model, which then cannot
satisfy the needs of all stakeholders.

This problem is a variation of the coupled evolution prob-
lem [7] and the model synchronization problem [8]. Coupled
evolution has been studied between metamodels and mod-
els. In the area of model synchronization, various techniques
have been proposed [9,10]; however, it is not immediately
clear how to apply these techniques in the context of views
on business process models. Thus, our research question is
how process views at different abstraction levels can be kept
consistent and changes can be propagated in both directions
automatically in a way that satisfies practical needs and con-
straints.

In this paper, we address this problemby presenting a tool-
supported approach to consistently synchronizing related
Business and IT process models,1 after independent editing.
The key novel aspect of the approach is the distinction of pri-
vate and public changes. Private changes only affect a single
view, whereas public ones are propagated back to the other
view. Dependencies between private and public parts, such
as sequence flows, are taken into account when the changes
are propagated between the views. We contribute detailed
requirements and a concrete design to synchronize process
views. In contrast to previous work (e.g., [11]), our approach
supports synchronizing models across levels of abstractions
related by not only hierarchical, but also non-hierarchical
refinements. We report on an prototypical implementation to
substantiate that a solution is technically feasible and per-
forms a comprehensive evaluation of the approach on indus-
trial Business–IT modeling scenarios. The evaluation shows
that the solution can be effective, provided that certain prac-
tices, such as frequent synchronizations, are followed. The

1 Throughout the text, we indistinctly use ‘model’ or ‘view’when refer-
ring to a particular perspective—Business or IT.

evaluation also identifies challenges remaining for future
work, such as dealingwith parallel edits. An earlier version of
this paper appeared elsewhere [12]; the present paper extends
it with the evaluation study and expands on the description
of the synchronization algorithm.

The paper is structured as follows. In Sect. 2, we explain
in detail why synchronizing different process models views
is needed. Although the problem is recognized in academic
research, it is not universally accepted in practice after the
arrival of BPMN 2. Based on this motivation, we present
detailed requirements for a Shared Process Model in Sect. 3 .
We also explain several usage scenarios of the SharedProcess
Model and discuss key aspects of the consistency between
different views. In Sect. 4, we introduce our technical realiza-
tion of the Shared Process Model and report on a prototype.
In Sect. 5, we perform a comprehensive evaluation of the
approach on real-world data. Related work is discussed in
Sect. 6. Finally, Sect. 7 concludes the paper.

2 The business–IT gap problem

In this section, we motivate our Shared Process Model con-
cept. First we argue whywe think that a single process model
view is often not adequate for different stakeholders, and we
discuss how different views differ. We illustrate this issue by
example of two prominent stakeholder views of a process:
The business analysts view that is used for documentation,
analysis, and communicating requirements to IT and the IT
view of a process that is used directly for execution. Then, we
briefly argue that, with multiple views, we need a dedicated
effort to keep them consistent.

2.1 Why we want different views

Since BPMN 2 can be used for both documentation and
execution, why can we not use a single BPMN 2 model
that is shared between business and IT? To study this ques-
tion, we analyzed the range of differences between a process
model created by a business analyst and the corresponding
process model that was finally used to drive the execution
on a BPM execution engine. We built on our earlier study et
al. [2], which analyzed more than 70 model pairs from the
financial domain, and we also investigated additional model
pairs from other domains. Additionally we talked to BPM
architects from companies using process models to collect
further differences. We summarize our findings in this sec-
tion.

Before delving into details, let us first introduce our
running example. Figure 1 illustrates two corresponding
Business- and IT-level models, in a simplified claim han-
dling process. The top part of the figure shows the high-level
Business specification, and the bottom one shows the refined,

123

www.manaraa.com

Supporting different process views 1209

Fig. 1 Illustration of some
refinements often made going
from the business to the IT
model

executable, ITmodel. Some IT-specific changeswere applied
to the first to produce the second, for example, grouping tasks
(‘Get Personal Details’, ‘Get Insurance Details’) into a sin-
gle one (‘Get Request Details’), adding script tasks (‘Log
Session Data’) and adding exception handling events and
flows (‘Manual Handling’). A larger, more realistic exam-
ple is shown in the “Appendix,” together with a catalog of
common refinement patterns identified in the early study [2].
Note that the following categorization of changes, based on
the additional data, is a new contribution of this work, com-
pared to [2].

We identified the following categories of changes that
were applied in producing an execution model from a busi-
ness model.

• Complementary implementation detail Detail that is
needed for execution is merely added to the business
model, i.e., the part of the model that was specified by the
business analyst does not change. Such details include data
flow and its transformation, service interfaces, and com-
munication detail. For example, Fig. 1 shows the addition
of BPMN 2 task stereotypes in the IT model (the stereo-
types appear as small icons in the upper left corner of the
decorated tasks): user task (‘Get Request Detail’), script
task (‘Log Session Data’), service task (‘Create Response
Letter’), and send task (‘Send Response’).

• Formalization and renaming Some parts of themodel need
to be formalized further to be interpreted by an execu-
tion engine, including routing conditions, specialization
of tasks (into service task, human task, etc.; see Fig. 1),
typing of subprocesses (transaction, call) and typing of
events. Furthermore, activities are sometimes renamed by
IT to better reflect some technical aspects of the activity.
These are local, non-structural changes to existing model
elements, which do not alter the flow.

• Behavioral refinement and refactoring The flow of the
process is changed in away that does not essentially change
the behavior. These types of changes include

– Hierarchical refinement/subsumption A high-level
activity is refined into a sequence of low-level activ-
ities or, more generally, into a subprocess with the
same input/output behavior. For example, ‘Settle
Claim’ in Fig. 1 is refined into ‘Create Response Let-
ter’ and ‘Send Response.’ The refining subprocess
may or may not be explicitly enclosed in a separate
scope (subprocess or call activity). If it is not enclosed
in a separate scope, it is represented as a subgraph
which has, in most cases, a single entry and a sin-
gle exit of sequence flow. We call such a subgraph a
fragment in this paper.

On the other hand, multiple tasks on the business level may
be implemented in a single service call or a single human
task to map the required business steps to existing services
and sub-engines (human task, business rules). For example,
in Fig. 1, ‘Get Personal Details’ and ‘Get Insurance Details’
are subsumed by a single call ‘Get Request Details’ to the
human task engine.

– Hierarchical refactoring. Existing process parts are sepa-
rated into a subprocess or call activity, or they may be out-
sourced into a separate process that is called by a message or
event. Besides better readability and reuse, there are several
other IT-architectural reasons motivating such changes. For
example, performance, dependability, and security require-
ments may require executing certain process parts in a sep-
arate environment. In particular, long-running processes are
often significantly refactored under performance constraints.
A long-running process creates more load on the engine
than a short-running process because each change needs to
be persisted. Therefore, short-running parts of long-running
process are extracted to make the long-running process
leaner.

123

www.manaraa.com

1210 J. Küster et al.

– Task removal and addition Sometimes, a business task is not
implemented on the BPM engine. It may be not subject to
the automation or it may already be partly automated outside
the BPM system. On the other hand, some tasks that are not
considered to be a part of an implementation of a specific
business task are added on the IT level, for example, a script
task retrieving, transforming or persisting data or a task that
is merely used for debugging purposes (e.g., ‘Log Session
Data’ in Fig. 1).

• Additional behavior Business-level process models are
often incomplete in the sense that they do not specify all
possible behavior. Apart from exceptions on the business-
level that may be specified in accompanying and more
detailed use case documents, there are usually many tech-
nical exceptions that may occur that require error handling
or compensation. This error handling creates additional
behavior on the process execution level. In Fig. 1, some
fault handling has been added to the IT model to catch
failing service calls.

• Correction and revision of the flow Some business-level
process models would not pass syntactical and semantical
validation checks on the engine. They may contain mod-
eling errors in the control flow or data flow that need to be
corrected before execution. Sometimes activities also need
to be reordered to take previously unconsidered data and
service dependencies into account. These changes gener-
ally alter the behavior of the process. A special case is the
possible parallelization of activities through IT, whichmay
or may not be considered a behavioral change.

Different changes that occur in the IT implementation
phase relate differently to the Shared Process Model idea.
Complementary detail could be easily handled by a single
model through a progressive disclosure of the processmodel,
i.e., showing one graphical layer to business and two layers
to IT stakeholders.

However, the decision which model elements are ‘busi-
ness relevant’ depends on the project and should not be stat-
ically fixed (as in the BPMN 2 conformance classes). There-
fore, an implementation of progressive disclosure requires
extensions that specifywhich element belongs towhich layer.
Additional behavior can be handled through progressive dis-
closure in a similar way as long as there are no dependencies
to the business layer. For example, according to the BPMN 2
metamodel, if we add an error boundary event to a task with
subsequent sequence flow specifying the error handling, then
this creates no syntactical dependencies from this addition
back to the business elements. However, if we merge the
error handling back to the normal flow through a new gate-
way or if we branch off the additional behavior by a new
gateway in the first place, then the business elements need
to be changed, which would substantially complicate any
implementation of a progressive disclosure. In this case, it

would be easier to maintain two separate views. Also the
changes in the categories behavioral refinement and refac-
toring as well as formalization and renaming clearly suggest
to maintain two separate views.

Why different views need to be synchronized In fact, many
organizations keep multiple versions of a process model to
reflect the different views of the stakeholder (cf., e.g., [2,3,
13]). However, because today’s tools do not have any support
for synchronizing them, they typically become inconsistent
over time. That is, the views disagree about which business
tasks are executed and in which order. This can lead to costly
business disruptions or to audit failures [2].

There are various reasons why business and IT mod-
els become inconsistent over time. We explained above in
Sect. 2.1 (see Correction and revision of the flow) that,
already in the initial implementation of a process, the flow
may need to be corrected or revised. If these updates are only
done on the IT model and not on the business model, then
the models become inconsistent in the initial implementation
phase. Respondents in our earlier survey [2] have agreed
that inconsistency arises already in that phase because the
initial business model is incomplete (frequently), contains
modeling errors (occasionally to frequently), the business
model contradicts some IT requirements (occasionally), and
the business model does not faithfully represent the actual
business process (rarely).

Furthermore, more inconsistencies arise when business
requirements change, which are then often applied to only
the IT model because of time pressure, while neglecting a
simultaneous update of the corresponding business model.
Likewise, changing IT requirements, e.g., an IT infrastruc-
ture change, may affect some business-relevant aspects of the
IT model, which leads to further inconsistencies between the
business model and the IT model.

Thus, while different views onto a process are needed by
different stakeholders, different viewsquickly become incon-
sistent if not synchronized. Inconsistencies in turn can create
business disruptions, audit failures, maintenance problems
or delays in the implementation of new requirements. They
can also lead to a business analyst misinterpreting process
monitoring data.

3 Requirements for a Shared Process Model

3.1 The Shared Process Model concept

The Shared Process Modelthat we now present has the capa-
bility to synchronize process model views that reside on dif-
ferent abstraction levels. The concept is illustrated by Fig. 2.
The Shared Process Model provides two different views, a
business view and an IT view, and maintains the consistency
between them. A current view can be obtained at any time

123

www.manaraa.com

Supporting different process views 1211

Fig. 2 Process view
synchronization via a Shared
Process Model

by the corresponding stakeholder by the ‘get’ operation. A
view may also be changed by the corresponding stakeholder.
With a ‘put’ operation, the changed view can be checked into
the Shared Process Model, which synchronizes the changed
view with the other view.

Each view change can be either designated as a public or
a private change. A public change is a change that needs to
be reflected in the other view, whereas a private change is
one that does not need to be reflected. For example, if an
IT architect realizes, while working on the refinement of the
IT model, that the model is missing an important business
activity, the architect can insert the missing activity in the
IT model. The architect can then check the change into the
Shared Process Model, designating it as a public change to
express that the activity should be inserted in the business
view as well. The Shared Process Model then inserts the new
activity in the business view automatically at the right posi-
tion, i.e., every new business view henceforth obtained from
the Shared ProcessModel will contain the new activity. If the
architect designated the activity insertion as a private change,
then the business view will not be updated and the new activ-
ity will henceforth be treated by the Shared Process Model
as an ‘IT-only’ activity. For example, in Fig. 1, adding the
task ‘Log Session Data’ would be a private change to the
IT view, since it only makes sense for execution purposes.
On the other hand, adding a task such as ‘Arrange Repair’
to the IT model would be a public change, because it is also
relevant to the Business view.

Figure 2 also illustrates the main three status conditions
of a Shared Process Model: business conformance, IT con-
formance and Business–IT consistency. The business view is
business conformant if it is approved by the business ana-
lyst, i.e., if it reflects the business requirements. This condi-
tion also implies that the business view passes basic validity
checks of the business modeling tool. The IT view is IT con-
formant if it is approved by the IT architect, i.e., if it meets
the IT requirements. Similarly, this condition also implies
that the IT view passes all validity checks of the IT model-
ing tool and the execution engine. Business–IT consistency
means that the business view faithfully reflects the IT view,
or equivalently, that the IT model faithfully implements the
business view.

In the remainder of this section, we discuss the require-
ments and capabilities of the Shared Process Model in more
detail.

3.2 Usage scenarios and requirements

We distinguish the following usage scenarios for the Shared
Process Model. In the presentation scenario, either the busi-
ness or IT stakeholder can, at any time, obtain a current state
of his or her view with the ‘get’ operation. The view must
reflect all previous updates, which may have been caused by
either stakeholder.

The Shared Process Model is initialized with a single
process model (the initial business view), i.e., business and
IT views are initially identical. Henceforth, both views may
evolve differently through view change scenarios, which are
discussed below. For simplicity, we assume here that changes
to different views do not happen concurrently. Concurrent
updates can be handled on top of the Shared Process Model
using known concurrency control techniques. That is, either a
pessimistic approach is chosen and a lockingmechanismpre-
vents concurrent updates, which, we believe, is sufficient in
most situations. Or an optimistic approach is chosen and dif-
ferent updates to theSharedModelmayoccur concurrently—
but atomically, i.e., each update creates a separate new con-
sistent version of the Shared Model. Parallel versions of the
Shared Model must then be reconciled through a horizon-
tal compare/merge technique on the Shared Model. Such a
horizontal technique would be orthogonal to the vertical syn-
chronization we consider here and out of scope of this paper.

In the view change scenario, one view is changed by
a stakeholder and checked into the Shared Process Model
with the ‘put’ operation to update the other view. A view
change may contain many separate individual changes such
as insertions, deletions, mutations or rearrangement of mod-
eling elements. Each individual change must be designated
as either private or public. We envision that often a new view
is checked into the Shared ProcessModel that contains either
only private or only public individual changes. These special
cases simplify the designation of the changes. For example,
during the initial IT implementation phase, most changes are
private IT changes.

A private change only takes effect in one view, while the
other remains unchanged. Any public change in one view
must be propagated to the other view in an automated way.
We describe inmore detail in Sect. 4, in what way a particular
public change in one view is supposed to affect the other view.
An appropriate translation of the change is needed in general.
User intervention should only be requested when absolutely

123

www.manaraa.com

1212 J. Küster et al.

necessary for disambiguation in the translation process. We
will present an example of such a case in Sect. 4.

The designation of whether a change is private or pub-
lic is in principle a deliberate choice of the stakeholder who
modifies a view. However, we imagine that governance rules
are implemented that disallow certain changes to be private.
For example, private changes should not introduce incon-
sistencies between the views, e.g., IT should not change the
order of two business-relevant tasks and hide that as a private
change. Therefore, the business–IT consistency status need
to be checked upon such changes.

The key function of the Shared Process Model is to main-
tain the consistency between business and IT view.Business–
IT consistency can be thought of as aBoolean condition (con-
sistent or inconsistent) or a measure representing a degree of
inconsistency. According to our earlier study [2], the most
important aspect is coverage, which means that (i) every ele-
ment (e.g., activities and events) in the business view should
be implemented by the IT view, and (ii) only the elements in
the business view are implemented by the IT view.

The second important aspect of business–IT consistency
is preservation of behavior. The activities and events should
be executed in the order specified by the business view. The
concrete selection of a consistency notion and its enforce-
ment policy should be configurable on a per-project basis. A
concrete notion should be defined in a way that users can eas-
ily understand it, to make it as easy as possible for them to fix
consistency violations. Common IT refinements as discussed
in Sect. 2.1 should be compatiblewith the consistency notion,
i.e., should not introduce inconsistencies, whereas changes
that cannot be considered refinements should create consis-
tency violations. Checking consistency should be efficient
in order to be able to detect violations immediately after a
change.

On top of the previous scenarios, support for change man-
agement is desirable to facilitate collaboration between dif-
ferent stakeholders through the Shared Process Model. The
change management should support approving or rejecting
public changes. In particular, public changes made by IT
should be subject to approval by business. Only a subset of
the proposed public changes may be approved. The tool sup-
porting the approval of individual changes should make sure
that the set of approved changes that is finally applied to the
Shared Process Model leads to a valid model. The Shared
Process Model should be updated automatically to reflect
only the approved changes. The changemanagement requires
that one party can see all the changes done by the other party
in a human-consumable way. In particular, it should be possi-
ble for an IT stakeholder to understand the necessary imple-
mentation steps that arise from a business view change.

If a process is in production, all three conditions, business
conformance, IT conformance, and business–IT consistency,
should be met. Upon a public change in the IT view, the

business view changes and hence the Shared Process Model
must show that the current business view is not approved.
Conversely, a public change in the business view changes
the IT view and the Shared Process Model must indicate that
the current IT view is not approved by IT. Note that a change
in the IT view that was induced by a public change in the
business view is likely to affect the validity of the IT view
with respect to executability on a BPM engine.

4 A technical realization of the Shared Process Model

In this section, we present parts of a technical realization of
the concepts and requirements from Sect. 3. We detail how
we have designed and implemented them.

4.1 Basic solution design

We represent the Shared Process Model by maintaining two
process models, one for each view, together with correspon-
dences between their model elements, as illustrated by Fig. 3.
The upper part shows the process model for business; the
lower part shows the process model for IT. A correspon-
dence, shown by red dashed lines, is a bidirectional rela-
tion between one or more elements of one model and one or
more elements of the other model. Correspondences are also
known as traceability links in requirements engineering [14]
and in model transformation [15].

For example, in Fig. 3, task ‘Validate Claim’ of the busi-
ness level corresponds to task ‘Validate Claim on Decision
Server’ of the IT level, which is an example for a one-to-one
correspondence. Similarly, task ‘Reject Claim’ of the busi-
ness level corresponds to subprocess ‘Reject Claim’ of the
IT level. Further, tasks ‘Get Personal Details’ and ‘Get Insur-
ance Details’ correspond to the (human) task ‘Get Request
Details’ of the IT level, which is an example for a many-
to-one correspondence. Many-to-many correspondences are
technically possible, but we have not found a need for them
so far. We only relate the main flow elements of the model,
i.e., activities, events, and gateways, but sequence flow is not
linked. Each element is contained in at most one correspon-
dence. An element that is contained in a correspondence is
called a shared element, otherwise it is a private element.

We could have chosen to represent the Shared Process
Model differently by merging the business and IT views into
one commonmodelwith overlapping parts being represented
only once. This ultimately results in an equivalent representa-
tion, but we decided to keep both views separate in the shared
models to afford us more flexibility during the development
of the prototype.

Furthermore, with our realization of the Shared Process
Model, we can also easily support the following:

123

www.manaraa.com

Supporting different process views 1213

Fig. 3 The Shared Process
Model as a combination of two
individual models, coupled by
correspondences

Get
Personal
Details

Get
Insurance

Details

Validade
Claim

Arrange
Repair

Get
Request
Details

Log
Session

Data

Reject
Claim

Settle
Claim

Validate
Claim on
Decision
Server

Arrange
Repair

Create
Response

Letter

Send
Response

Reject
Claim

Manual
Handling

• Import/export to/from the Shared Process Model: From
the Shared Process Model, a process model must be cre-
ated (e.g., business view) that can be shown by an editor.
This is straight-forward in our representation. We use
BPMN 2 internally in the Shared Process Model, which
can be easily consumed outside by existing editors. Like-
wise, other tools working on BPMN 2 can be leveraged
for the Shared Process Model prototype easily.

• Generalization to a Shared ProcessModelwithmore than
two process models: The views could be arranged in a
chain. For example, some organizations refine a busi-
ness process view into an IT architecture view, which is
then refined into an IT implementation view [2]. Such
a chain can be realized with three internal models and
two sets of correspondences. A change in one view can
then be successively propagated to the other two. In prin-
ciple, this schema can be used as long the arrangement
of the views does not create cycles. A more general and
scalable approach is to use a star structure, where a cen-
tral model contains all synchronizable information and
all other models (the views) only connect to this central
model by correspondences. Each change to a view then
is propagated to a change in the central model, which in
turn is propagated to all other views.

The following subsections detail the typical flow of steps
when maintaining corresponding views. Section 4.6 dis-
cusses the implementation of the prototype.

4.2 Establishing and maintaining correspondences

A possible initialization of the Shared Process Model is with
a single process model, which can be thought of the initial
business view. This model is then internally duplicated to

serve as initially identical business and IT models. This cre-
ates one-to-one correspondences between all the main ele-
ments of the processmodels for business and IT. The creation
of such correspondences is completely automatic because in
this case a correspondence is created between elements with
the same universal identifier during the duplication process.
Our current tool prototype supports this initializationmethod.
Another possible initialization is with a pair of initial busi-
ness and IT views where the two views are not identical.
For example, they might be taken from an existing project
situation where the processes at different abstraction levels
already exist. In such a case, the user would need to spec-
ify the correspondences manually or use process matching
techniques to achieve a higher degree of automation [16].

A one-to-many or many-to-one correspondence can be
introduced through an editing wizard. For example, if an IT
architect decides that one business activity is implemented by
a series of IT activities, he uses a dedicated wizard to specify
this refinement. The wizard forces the user to specify which
activity is replaced with which set of activities; hence, the
wizard can establish the one-to-many correspondence. For
example, in Fig. 3, the task ‘Settle Claim,’ in the Business
view, corresponds to two other tasks in the IT view: ‘Create
Response Letter’ and ‘Send Response.’

The Shared Model evolves either through such wizards,
in which case the wizard takes care of the correspondences,
or through free-hand editing operations, such as deletion and
insertion of tasks. When such changes are checked into the
Shared Model as public changes, the correspondences need
to be updated accordingly. For example, if an IT architect
introduces several new activities that are business-relevant
and therefore designated as public changes, the propagation
to the business level must also include the introduction of
new one-to-one correspondences. Similarly, if an IT archi-

123

www.manaraa.com

1214 J. Küster et al.

tect deletes a shared element on the IT level, a correspon-
dence connected to this shared element must be removed
when propagating this change. Naturally, wizards offer more
automation but may have limited repertoire of transforma-
tions, and the user may not be familiar with all the available
ones.Manual edits, on the other hand, are more flexible, such
as using other editors, but may slow down the development
process. Currently, the tool supports free-hand editing and
four refactoring wizards (See Sect. 5.4).

4.3 Business–IT consistency

As described in Sect. 3.2,we distinguish coverage and preser-
vation of behavior. Coverage can be easily checked by help
of the correspondences. Every private element, i.e., every
element that is not contained in a correspondence must be
accounted for. For example, all private business tasks, if any,
could be marked once by the business analyst; similarly, all
private IT tasks could be marked by the IT architect. The
Shared Process Model then remembers these designations.
A governance rule may restrict who can do these designa-
tions.

For preservation of behavior, we distinguish strong and
weak consistency according to the IT refinement patterns
discussed in Sect. 2.1. If business and IT views are strongly
consistent, then they generate the same behavior. If they are
weakly consistent, then every behavior of the IT view is a
behavior of the business view, but the IT view may have
additional behavior, for example, to capture additional excep-
tional behavior. As with coverage, additional behavior in the
ITviewshouldbe explicitly reviewed to check that it is indeed
considered technical exception behavior and not considered
‘business-relevant.’ Such business-irrelevant behavior in the
IT view should be marked as private.

We use the following concretizations of strong and weak
consistency.

• We define the Shared Process Model to be strongly con-
sistent if the IT view can be derived from the busi-
ness view by applying only operations from the first
three categories in Sect. 2.1: complementary implemen-
tation detail, formalization and renaming, and behavioral
refinement and refactoring. Private tasks are allowed, but
deleting them while leaving the flows they established
should lead to strongly consistentmodels. The operations
from the first three categories all preserve the behavior.
The Shared Process Model in Fig. 3 is not strongly con-
sistent because the IT view contains private boundary
events. In essence, the private elements introduce new
control flow that is not present in the business model.
Without the boundary events and without activity Y ,
the model would be strongly consistent. Figure 4 shows
examples for violating strong consistency.

Fig. 4 Examples of inconsistencies. Private tasks are shown in gray

An initial Shared Process Model with two identical views is
strongly consistent. To preserve strong consistency, all flow
rearrangements on one view, i.e., moving activities, rearrang-
ing sequence flow or gateways must be propagated to the
other view as public changes.

• For weak consistency, we currently additionally allow only
IT-private error boundary events leading to IT-private excep-
tion handling. Technically we could also allow additional IT-
private gateways and additional branches on shared gateways
here, but we have not yet seen a strong need for them. The
Shared Process Model in Fig. 3 is weakly consistent. On the
other hand, the examples in Fig. 4 violate weak consistency:

(a) Sequence flow out of order: Execution of ‘A’ and ‘B’
is reversed in the IT model;

(b) Overlapping execution via interleaving: Execution of
‘A’ and ‘B’ overlap in the IT model;

(c) Overlapping execution via subprocess: ‘B’ executed
as part of ‘A’ in the IT model; and

(d) Potentially missing execution: ‘A’ may or may not be
executed in the IT model.

We have used the simplest notion(s) of consistency such
that all the refinement patternswehave encountered so far can
be dealt with. We have not yet seen, within our usage scenar-
ios, the need for more complex notions based on behavioral
equivalences such as trace equivalence [17] or bisimulation
[18]. Further, this work only considers behavior generated
by the abstract control flow, i.e., we do not take into account
how data influences behavior.We leave data flow consistency
for future work.

Strong and weak consistency can be efficiently checked.
For strong consistency, the algorithm consists of the follow-
ing three steps: (1) remove each private task from each of
the two views and reconnect the incident elements; (2) check
for each one-to-many correspondence, i.e., where a task in
one view corresponds to a set T of multiple tasks in the other
view, that the set T forms a single-entry-single-exit fragment
[19], that is, a connected subgraph with a single-entry and a
single-exit edge such that the set of tasks in that subgraph is
T . Such a check is straightforward and can be implemented
in linear time. If the check succeeds, replace each single-
entry-single-exit fragment with a single task. The replace-
ment reduces each one-to-many correspondence to a one-

123

www.manaraa.com

Supporting different process views 1215

to-one correspondence. (3) Check whether the two obtained
graphs are isomorphic via the correspondences. To do so, it
suffices to check for each pair (x, y) of corresponding ele-
ments, whether (i) the graph predecessors of x correspond
to the predecessors of y and that (ii) the graph successors
of x correspond to the successors of y. Also this check can
be implemented to run in linear time. To check weak consis-
tency, first remove each IT-private error boundary event and
all private model elements of the IT view that are connected
to the public elements only through that error boundary event.
Then check strong consistency as described above.

The automatic propagation of public changes, which we
will describe in the following sections, rests on the Shared
Process Model being at least weakly consistent.

4.4 Computing changes between process model versions

If the Shared Process Model evolves by changes in the busi-
ness or IT view, then such changes must be potentially prop-
agated from one view to the other. As a basis for our tech-
nical realization of the Shared Process Model, an approach
for compare and merge of process models is used [20]. We
use these compound operations because they minimize the
number of changes and represent changes in a higher level
of abstraction. This is in contrast to other approaches for
comparing and merging models, which focus on computing
changes in each model element.

Table 1 shows the change operations that we use for rep-
resenting changes: InsertActivity, DeleteActivity, andMove-
Activity, respectively, insert, delete, and move activities or
other elements such as events and subprocesses. InsertFrag-
ment, DeleteFragment, and MoveFragment are used for,
respectively, inserting, deleting, and moving fragments that
represent control structures. The computation of a change
script consisting of such compound operations is based on
comparing two process models and their Process Structure
Trees. For more details of the comparison algorithm, the
reader is referred to [20].

As an example for an evolution scenario of the Shared
Process Model, consider Fig. 5. The left-hand side shows a
part of the initial state of the Shared Process Model in our
scenario (fragment of Fig. 3), which contains a 2-to-1 corre-
spondence and a private IT task. Thus, some IT refinements
have been done already. Assume now, that during IT refine-
ment, the IT architect realizes that, in a similar process that he
has implemented previously, there was an additional activ-
ity that checks the provided customer details against existing
records. The architect is wondering why this is not done in
this process and checks that with the business analyst, who
in turn confirms that this activity was just forgotten. Conse-
quently, the IT architect now adds this activity together with
a new loop to the IT view, resulting in a new IT view shown
in the lower right quadrant of Fig. 5. Upon checking this into
the Shared Process Model as a public change, the business
view should be automatically updated to the model shown in
the upper right quadrant of Fig. 5.

To propagate the changes, one key step is to compute
change operations between process models in order to obtain
a change script as illustrated in Fig. 5. In the particular exam-
ple, we compute three compound change operations: the
insertion of a new empty fragment f containing the two XOR
gateways and the loop (I nsert Fragment , see Fig. 7), the
insertion of a newactivity (I nsert Activi t y), and themove of
an activity (MoveActivi t y), illustrated by the change script
in Fig. 5. In the next section, we explain how we use our
approach to realizing the evolution of the Shared Process
Model.

4.5 Evolution of the Shared Process Model

For private changes, only themodel in which they occurred is
updated. In the following, we explain how public changes are
propagated from IT to business and the case from business
to IT is analogous.

When a new IT view is checked into the Shared Process
Model, we first compute all changes between the old model
IT and the new model IT’, giving rise to a change script

Table 1 Change operations according to [20]

Change operation op Effects on Process Model V

InsertActivity (x, a, b) Insertion of a new activity x between two succeeding elements a and b in process model V and reconnection of
control flow

DeleteActivity (x) Deletion of activity x and reconnection of control flow

MoveActivity (x, a, b) Movement of activity x from its old position into its new position between two succeeding elements a and b in
process model V and reconnection of control flow

InsertFragment (f, a, b) Insertion of a new fragment f between two succeeding elements a and b in process model V and reconnection of
control flow

MoveFragement (f, a, b) Movement of a fragment f from its old position to its new position

DeleteFragment (f, c, d) Deletion of fragment f between c and d from process model V and reconnection of control flow

123

www.manaraa.com

1216 J. Küster et al.

Start

Get
Personal
Details

Get
Insurance

Details

Validate
Claim

Get Request
Details

Start

Log
Session

Data

Validate
Claim on
Decision
Server

Start

Get
Personal
Details

Get
Insurance

Details

Validate
Claim

Get Request
Details

Start

Log
Session

Data

Validate
Claim on
Decision
Server

Check
Consistency
With Records

Check
Consistency
With Records

Op1: InsertFragment(f,`Get Request Details’, `Log Session Data’)
Op2: InsertActivity(`Check consistency With Records’, Merge, Decision),
Op3: MoveActivity(`Get Request Details’, Merge, `Check Consistency with Records’)

Op1T: InsertFragment(f,`Get Insurance Details’, `Validate Claim’)
Op2T: InsertActivity(`Check consistency With Records’, Merge, Decision),
Op3T: MoveActivity(`Get Request Details’, Merge, `Check Consistency with Records’)

Fig. 5 Example of a change script on the IT level that is propagated to the business level

DeltaIT

Process
Model
(IT’)

Process
Model

(B)

Process
Model

(IT)

Process
Model

(B’)

DeltaB

Correspondences

(a)

Process
Model
(IT1)

Process
Model

(B)

Process
Model

(IT)

Process
Model
(B1)

op1

op1
T op2

T

op2

…

…
Process
Model
(IT’)

Process
Model

(B’)

Process
Model
(IT2)

Process
Model
(B2)

(b)

Fig. 6 Delta computation for propagating changes

DeltaI T , see Fig. 6a. The change script is expressed in terms
of the change operations introduced above, i.e., DeltaI T =
〈op1, . . . , opn〉where eachopi is a change operation. In order
to propagate the changes to the business level, DeltaI T is
translated into a change script DeltaB for the business level.
This is done by translating each individual change operation
opi into an operation opTi and then applying it to the business
level. Likewise, we also apply each change operation on the
IT level to produce intermediate process models for the IT
level. Overall, we thereby achieve a synchronous evolution
of the two process models, illustrated in Fig. 6b.

Algorithm 1 describes in pseudo-code the algorithm for
translating a compound operation from IT to business.
The algorithm for translation from business to IT can be
obtained by swapping business and IT. Overall, one key
step is replacing parameters of the operation from the IT
model by parameters of the business model according to
the correspondences. For example, for translating a change
I nsert Activi t y(x, a, b), the parametersa andb are replaced
according to their corresponding ones, following the corre-
spondences in the Shared Process Model. In case that a and
b are private elements, this replacement of elements requires

forward/backward search in the IT model until one reaches
the nearest shared element (Step 1 of the algorithm). Simi-
larly, for translating an I nsert Fragment (f, a, b), the para-
meters a and b are replaced in the same way. An operation
DeleteActivi t y(x) is translated into DeleteActivi t y(x ′)
(assuming here that x is related to x ′ by a one-to-one cor-
respondence). After each translation, in Step 2 the change
operation aswell as the translated change operation is applied
to produce new models Bi and I Ti , as illustrated in Fig. 6b.
Afterwards, Step 3 updates the correspondences between the
business and IT model. For example, if x is the source or
target of a one-to-many/many-to-one correspondence, then
all elements connected to it must be removed.

For the example in Fig. 5, the change script DeltaI T is
translated iteratively and applied as follows:

• The operation InsertFragment(f, ‘Get Request Details’,
‘Log Session Data’) is translated into InsertFragment(f,
‘Get InsuranceDetails’, ‘ValidateClaim’). The operation
as well as the translated operation is applied to the IT and
business model, respectively, to produce the models I T1
and B1, and also the correspondences are updated. In this

123

www.manaraa.com

Supporting different process views 1217

Algorithm 1 Translation of a compound operation op from
process model I T to Business model B
Step 1: compute corresponding parameters of the operation op
if op==InsertActivity(x,a,b) then

Search backward from a until an element a’with correspondences
is reached

Search forward from b until an element b’ with correspondences
is reached

opT := InsertActivity(x,a’,b’)
else if op==InsertFragment(f,a,b) then

Search backward from a until an element a’with correspondences
is reached

Search forward from b until an element b’ with correspondences
is reached

opT := InsertFragment(f,a’,b’)
else if op==MoveActivity(x,a,b) then

Search backward from a until an element a’with correspondences
is reached

Search forward from b until an element b’ with correspondences
is reached

opT := MoveActivity(x,a’,b’)
else if op==MoveFragment(f,a,b) then

Search backward from entry of f until an element a’ with corre-
spondences is reached

Search forward from exit of f until an element b’ with correspon-
dences is reached

opT := MoveFragment(f,a’,b’)
else if op==DeleteActivity(x) then

opT := DeleteActivity(x’)
end if
Step 2: apply opT to B, apply op to I T
if opT ==InsertActivity(x,a’,b’) or opT =MoveActivity(x,a’,b’) or

opT =MoveFragment(f,a’,b’) then
if connected(a’,b) then

Apply opT to B
Apply op to I T

else
Choose Insertion Point ip on Path from a’ to b’
Apply opT to B at insertion point ip
Apply op to I T

end if
end if
Step 3: update correspondences between B and I T
if op==DeleteActivity(x) then

Remove all correspondences involving x
else if op==InsertActivitiy(x,a,b) then

Insert correspondence (x,x’)
else if op==InsertFragment(f,a,b) then

Insert correspondences between all fragment elements of f and f’
end if

particular case, new correspondences are created, e.g.,
between the control structures of the inserted fragments.
The result is shown in Fig. 7.

• The operation InsertActivity (‘Check Consistency with
Records’, Merge, Decision) is translated into InsertAc-
tivity (‘Check Consistency with Records’, Merge, Deci-
sion), where the new parameters now refer to elements
of the business model. These operations are then also
applied, in this case to I T1 and B1, and correspondences
are updated.

• The operation MoveActivity(‘Get Request Details’,
Merge, ‘Check Consistency with Records’) is translated
intoMoveActivity(‘Get Request Details’, Merge, ‘Check
Consistency with Records’), where the new parameters
now refer to elements of the business model. Again, as in
the previous steps, the operations are applied and produce
the new Shared Process Model consisting of B ′ and I T ′.

In general, when propagating a change operation, it can
occur that the insertion point in the other model cannot be
uniquely determined. For example, if a business user inserts
a new task between the activity ‘Get Insurance Details’ and
‘Validate Claim’ in Fig. 5, then this activity cannot be propa-
gated to the IT view automatically without user intervention.
In this particular case, the user needs to intervene to deter-
mine whether the new activity should be inserted before or
after the activity ‘Log Session Data’.

In addition to computing changes and propagating them
automatically,many scenarios require that before changes are
propagated, they are approved by the stakeholders. In order
to support this capability, changes can first be shown to the
stakeholders and the stakeholders can approve/disapprove
the changes. Only approved changes will then be applied.
Disapproved changes are handed back to the originating
stakeholder. They will then have to be handled on an indi-
vidual basis. Such a change management can be realized on
top of our change propagation.

4.6 Implementation

As a proof of concept, we have implemented a prototype as
an extension to the IBMBusiness ProcessManager and as an
extension to an open source BPMN editor. A recorded demo
of our prototype is publicly available [21]. Our current pro-
totype implements initialization of a Shared Process Model
from a BPMN process model, check-in of private and pub-
lic changes to either view, and change propagation between
both views. Furthermore, we have implemented a check for
strong consistency, which can be triggered when checking
in private changes. We currently assume that the changes
between two subsequent IT views (or business views respec-
tively) are either all public or all private. With an additional
component, allowing marking individual operations as pri-
vate or public, this assumption can be removed. Then, the
change script computed for the pair of IT views or busi-
ness views would be presented to the user who could then
mark the public changes individually. For this scenario, the
compare–merge component needs to meet the following two
requirements: (i) The change script must be consumable by a
human user, and (ii) individual change operations presented
to the user must be as independent as possible. Note that the
change operations in a change script are in general interde-
pendent, which restricts the ability to apply only an arbitrary

123

www.manaraa.com

1218 J. Küster et al.

Start

Get
Personal
Details

Get
Insurance

Details
Validate
Claim

Get Request
Details

Start

Log
Session

Data

Validate
Claim on
Decision
Server

Start

Get
Personal
Details

Get
Insurance

Details

Validate
Claim

Get Request
Details

Start

Log
Session

Data

Validate
Claim on
Decision
Server

Op1: InsertFragment(f,`Get Request Details’, `Log Session Data’)

Op1T: InsertFragment(f,`Get Insurance Details’, `Validate Claim’)

Fig. 7 First step of evolution

subset of operations to a model. Therefore, a compare/merge
component may not support separating all public from all
private changes.

In fact, we first experimented with a generic compare–
merge component from the EMF Compare Framework,
which could be used to generate a change script for two
process model based on the process metamodel, i.e., BPMN
2. The change operations were so fine-grained, e.g., ‘a
sequence flow reference was deleted from the list of incom-
ing sequence flows of a task’, such that the change script was
very long and notmeaningful to a human user without further
postprocessing. Furthermore, theBPMN2metamodel gener-
ates very strong dependencies across the different parts of the
model so that separate changes were likely to be dependent
in the EMF Compare change script.

For these reasons, we switched to a different approach
with compound changes as described above. Note that the
change approval scenarios described in Sect. 3.2 generate
the same requirements for the compare/merge component:
Human consumability of the change script and separability
of approved changes from rejected changes.

5 Evaluation

5.1 Objectives

We conducted an evaluation of the shared model tool using
real-world data. The evaluation was carried out by means
of several process modeling experiments, counting on help
and feedback from industry practitioners. Our overarching
goal was to observe the adherence of the tool behavior to
the design requirements previously elicited in the develop-
ment process of the same company. More specifically, the
evaluation aimed at answering the following questions:

Q1 How successfully can the tool synchronize typical
Business-to-IT process modeling edit patterns? [2]

We wanted to know how successfully the tool deals
with edit patterns—instances of typical correspondence pat-
terns—used by practitioners to build IT executable models
based on their high-level business specifications. We applied
the tool by replaying several concrete modeling scenarios
and obtained feedback from practitioners who created and
maintained the realmodels. A summary of typical correspon-
dence patterns employed by the company and their rationales
is shown in the “Appendix.”

Q2Howsuccessfully can the tool synchronize scenarios com-
posed of multiple edit patterns?

In practice, an update to a model may lag far behind
updates to its counterpart. We wanted to know how the tool
would dealwith synchronizing larger chunks of change, com-
posed of multiple and mixed (private and public) edits at
once. Insights from such scenarios also suggest new tool fea-
tures and future work.

Q3 Are there recommended best practices in using the tool,
such that they could ensure consistency between Business
and IT views?

We wanted to know the most effective ways of using the
tool, such that it ensures consistency between business and
IT models.

To answer these questions, we replayed concrete change
scenarios in Business and IT views, from a real project, as
described in the following.

5.2 Subjects

To study how the tool works in a concrete setting, we remod-
eled and replayed change history of a BPM project—Credit
Backoffice—from the Bank of Northeast of Brazil (BNB),

123

www.manaraa.com

Supporting different process views 1219

Table 2 Project size

Number of model elements

Pools Tasks Gateways Events Flows

Credit Backof f ice

Business 6 47 46 18 128

IT 6 107 52 31 154

our industry partner. Table 2 shows the size of the project, in
terms of the number ofmodel elements in each of its Business
and IT views (i.e., each of its types of process models).

BNB manages the change of software artifacts using two
IBM products—ClearQuest (workflow of change requests)
and ClearCase (artifact repository). Business employees
open change requests to the IT department using ClearQuest.
Every request has a unique ID, a textual description, and sev-
eral parameters, such as priority and nature of the change
(e.g., legal, evolution). Requests follow a sequence of steps,
for example, to group them into projects (when applicable)
before they arrive to IT. ITManagers assign IT professionals
(Project Managers, Architects, Developers) to every request.
IT technicians only can change artifacts in ClearCase by hav-
ing an assigned change request. When artifacts are changed,
ClearCase stores the change request ID in the change log.
With their current tool support, BNB specialists perform syn-
chronizations between Business and IT models by hand, i.e.,
by looking at the changes in onemodel and propagating them
to the other, when applicable.

We recovered the change log of the case study project from
the ClearQuest database, including the textual descriptions
associated with every change request. We had the following
objectives in collecting this data:

1. Select a snapshot of the project from the past, containing
consistent Business and IT views. We relied on domain
knowledge from BNB specialists to find a consistent pair
of those views. The snapshot selected was from Febru-
ary of 2010, just before a new business evolution was
about to start. As the models from BNB are implemented
using commercial versions of IBM tools (Business in
Websphere Business Modeler, and IT inWebsphere Inte-
grationDeveloper), we needed to remodel themusing the
shared model tool—the prototype uses an open source
BPMN 2.0 modeler, based on Eclipse.

2. Identify a set of concrete changes that weremade in Busi-
ness and IT views, along the project’s life cycle. By
analyzing 160 change requests, we found 23 of them
(instances of common Business-to-IT correspondence
patterns, see “Appendix”) that specifically affected the
process models. Most of the changes do not affect the

process models themselves, but other resources such as
databases, documentation and external services.

This dataset includes changes that cover different synchro-
nization scenarios between Business and IT views. Based on
it, we were able to: (i) replay the changes using the shared
model tool, (ii) apply the synchronization mechanisms avail-
able, and (iii) compare the results with the actual consistent
versions of the models, counting on knowledge from BNB
domain experts.

5.3 Correspondence patterns versus edit patterns

It is important to distinguish between correspondence and
edit patterns. The first represent typical correspondences to
derive an IT-level process out of its business-level specifica-
tion. Business and ITmodels are considered consistent if it is
possible to establish correspondence among all their models
elements that is consistent with the patterns.

Edit patterns, on the other hand, are particular ways of
implementing correspondence patterns. For example, one
can implement the correspondence pattern Split task into
block (see “Appendix”) by splitting a task in the IT model
or merging tasks in the business model. Table 3 summarizes
the relations between correspondence and edit patterns that
occurred in the case study. The edit patterns specify where
the changes occur and in which direction they are propagated
(when they are propagated), as explained in the next section.

5.4 Method

First, we used the shared model tool to recreate the afore-
mentioned version of the project from BNB (i.e., the Busi-
ness and IT process models from February 2010). The two
new process models were created identically as the original
ones, except that the IT model was translated from BPEL to
BPMN. For checking consistency, we focus on the control
flow of the process models. BPMN and BPEL control flow
constructs are similar in the sense that each can be mapped
into the other, according to the OMG specification of BPMN
2.0 [22]. The control flow of the original models was entirely
preserved for the evaluation. Note that the original models,
as represented in their respective modeling tools, also have
detailed information as attributes of nodes and flows, such
as the communication protocols and the addresses of the ser-
vices used. Some of those properties and parameters were
ignored in the remodeling effort, since they were not rele-
vant for the evaluation.

Second, for each one of the 23 real changes, we compared
the two adjacent versions of the BNBmodels (i.e., before and
after each change), and manually computed the diff between
the versions. As a result, for each change we recorded which
model elements (such as tasks, flows, gateways and events)

123

www.manaraa.com

1220 J. Küster et al.

Table 3 Correspondence versus
edit patterns Correspondence pattern (see “Appendix”) Edit pattern

Add boundary event (CP5) Add boundary event (IT only)

Add script task (CP3) Add business-relevant task to business (B ⇒ IT)

Add script task (CP3) Add business-relevant task to IT (IT ⇒ B)

Add manual task (CP2) Add manual task (Business only)

Add properties (CP1) Add properties (IT only)

Add protocol task (CP4) Add protocol task (IT only)

Add script task (CP3) Add script task (IT only)

Add technical exception flow (CP6) Add technical exception flow (IT only)

Change activity name (CP7) Change activity name (Business only)

Change activity type (CP8) Change activity type (IT only)

Refactor gateway (CP12) Refactor gateway (IT ⇒ B)

Split task into block (CP10) Refine task into fragment (IT only)

Split workflow (CP11) Refine task into subprocess (IT only)

Split task into block (CP10) Simplify selection into task (business only)

Split task into block (CP10) Split task into block (IT ⇒ B)

Suppress specification activity (CP9) Suppress specification activity (B ⇒ IT)

were added, removedor updated (e.g., renamedor other prop-
erties changed).

Third, we replayed (remodeled) the changes, individually
and then combined, using the tool. During the process, we
applied one of the synchronization mechanisms available,
according to how the propagation actually happened in the
revision history:

• Private (BusinessOnly)Change affects only theBusiness
view and need to be privately kept on it.

• Private (IT Only) Change affects only the IT view and
need to be privately kept on it.

• Public (Business ⇒ IT) Change is initially made on the
Business view and needs to be propagated to the IT view.

• Public (IT ⇒ Business) Change is initially made on the
IT view and needs to be propagated to the Business view.

For some changes, when applicable, we also applied built-
in model refactoring operations provided by tool:

• Simplify Selection into Task Several model elements can
be selected and collapsed into a single task.

• Turn into Service Task A generic task can be changed
into an IT service task.

• Refine Task into a Fragment A single task can be split
into a fragment (subflow) of other model elements—i.e.,
the inverse of Simplify Selection into Task.

• Refine Task into a Subprocess A special case of splitting
a task, where the resulting fragment is a subprocess.

Finally, we showed and discussed the results of the syn-
chronized views with BNB specialists who created the origi-

nal models. This way they could help us to assess whether the
tool had successfully synchronized the views consistently,
according to their domain knowledge and the current consis-
tent versions of the models.

The next two sections describe the results of applying the
tool to keep Business and IT views synchronized, by replay-
ing the model changes in two categories:

• Single synchronize one edit pattern at a time;
• Compound accumulate several edit patterns, respect-
ing their occurrence over time, and synchronize them
together.

In sequence, we discuss main lessons learned and threats
to their validity.

5.5 Results: single refinement patterns

Table 4 presents the change scenarios of individual edit pat-
terns, in terms of the number of model elements that have
been added or removed, as seen in the diff between adjacent
versions ofBNBmodels. Somepatterns, e.g.,Changeactivity
name, do not change the workflow, only alter model element
properties. The synchronization method used to propagate
the change is shown by a checkmark (�). Also, the tool has
some predefined refactoring operations, such as Refine Task
into Fragment. The last column informs which tool-provided
operation was used.

After applying the synchronization mechanism for each
scenario, the resulting (updated) Business and IT views were
captured and later discussed with the BNB specialists who
created and maintained the actual project. Table 5 summa-

123

www.manaraa.com

Supporting different process views 1221

Ta
bl
e
4

E
va
lu
at
io
n
sc
en
ar
io
s:
si
ng

le
re
fin

em
en
tp

at
te
rn
s

Sc
en
ar
io

Pa
tte
rn

in
st
an
ce

A
dd
ed

R
em

ov
ed

Sy
nc
hr
on
iz
at
io
n
m
et
ho
d

To
ol

re
fa
ct
or
in
g

Ta
sk
s

Fl
ow

s
E
ve
nt
s

G
at
ew

ay
s

Ta
sk
s

Fl
ow

s
E
ve
nt
s

G
at
ew

ay
s

Pr
iv
at
e
(b
us
in
es
s
on

ly
)

Pr
iv
at
e

(I
T
on
ly
)

Pu
bl
ic

(B
⇒

IT
)

Pu
bl
ic

(I
T

⇒
B
)

1
A
dd

m
an
ua
lt
as
k

2
4

–
–

–
–

–
–

�
–

2
C
ha
ng

e
ac
tiv

ity
na
m
e

–
–

–
–

–
–

–
–

�
–

3
Si
m
pl
if
y
se
le
ct
io
n

in
to

ta
sk

–
–

–
–

–
–

–
–

�
Si
m
pl
if
y

se
le
ct
io
n
in
to

ta
sk

4
A
dd

pr
op
er
tie
s

–
–

–
–

–
–

–
–

�
–

5
A
dd

sc
ri
pt

ta
sk

1
2

–
–

–
–

–
–

�
–

6
A
dd

sc
ri
pt

ta
sk

2
4

–
–

–
–

–
–

�
–

7
A
dd

pr
ot
oc
ol

ta
sk

2
4

–
–

–
–

–
–

�
–

8
A
dd

pr
ot
oc
ol

ta
sk

1
2

–
–

–
–

–
–

�
–

9
A
dd

bo
un
da
ry

ev
en
t

1
1

1
–

–
–

–
–

�
–

10
A
dd

te
ch
ni
ca
l

ex
ce
pt
io
n
flo

w
1

1
1

–
–

–
–

–
�

–

11
A
dd

te
ch
ni
ca
l

ex
ce
pt
io
n
flo

w
2

2
2

–
–

–
–

–
�

–

12
C
ha
ng
e
ac
tiv

ity
ty
pe

–
–

–
–

–
–

–
–

�
T
ur
n
in
to

se
rv
ic
e
ta
sk

13
R
efi
ne

ta
sk

in
to

fr
ag
m
en
t

2
4

–
2

–
–

–
–

�
R
efi

ne
ta
sk

in
to

fr
ag
m
en
t

14
Su

pp
re
ss

sp
ec
ifi
ca
tio

n
ac
tiv

ity

–
–

–
–

1
2

–
–

�
–

15
Sp

lit
ta
sk

in
to

bl
oc
k

6
12

–
2

–
–

–
–

�
–

16
R
efi
ne

ta
sk

in
to

su
bp
ro
ce
ss

–
–

–
–

–
–

–
–

�
R
efi

ne
ta
sk

in
to

su
bp
ro
ce
ss

17
R
efi
ne

ta
sk

in
to

su
bp
ro
ce
ss

–
–

–
–

–
–

–
–

�
R
efi

ne
ta
sk

in
to

su
bp
ro
ce
ss

18
R
ef
ac
to
r
ga
te
w
ay

1
2

–
–

–
–

–
–

�
–

19
A
dd bu
si
ne
ss
-r
el
ev
an
t

ta
sk

to
B
us
in
es
s

1
2

–
–

–
–

–
–

�
–

123

www.manaraa.com

1222 J. Küster et al.

Ta
bl
e
4

co
nt
in
ue
d

Sc
en
ar
io

Pa
tte
rn

in
st
an
ce

A
dd
ed

R
em

ov
ed

Sy
nc
hr
on
iz
at
io
n
m
et
ho
d

To
ol

re
fa
ct
or
in
g

Ta
sk
s

Fl
ow

s
E
ve
nt
s

G
at
ew

ay
s

Ta
sk
s

Fl
ow

s
E
ve
nt
s

G
at
ew

ay
s

Pr
iv
at
e
(b
us
in
es
s
on

ly
)

Pr
iv
at
e

(I
T
on
ly
)

Pu
bl
ic

(B
⇒

IT
)

Pu
bl
ic

(I
T

⇒
B
)

20
Su

pp
re
ss

sp
ec
ifi
ca
tio

n
ac
tiv

ity

–
–

–
–

2
4

–
2

�
–

21
A
dd bu
si
ne
ss
-r
el
ev
an
t

ta
sk

to
IT

1
2

–
–

–
–

–
–

�
–

22
Sp

lit
ta
sk

in
to

bl
oc
k

3
6

–
2

1
2

–
–

�
–

23
R
ef
ac
to
r
ga
te
w
ay

1
2

–
–

–
–

–
–

�
–

rizes the assessment made by the specialists. The tool was
capable of correctly synchronizing all the individual edit pat-
terns, with minor layout issues. We discuss these results in
the Sect. 5.7.

5.6 Results: compound refinement patterns

Besides the atomic (simple) change cases, composed of sin-
gle edit patterns per synchronization, we also tested the tool
on other concrete cases, where one model update (typically
on the Business side) lags behind the other. Such situation
requires multiple edits to be synchronized at once.

Thus, we created seven extra scenarios (as shown in the
Table 6) by combining multiple edit patterns together. The
edits were combined according to the change history, i.e.,
respecting their occurrences over time. We divided the first
49months of the projects’ change history into seven periods
of evolution, such that each scenario comprises 7months of
change in the IT process model.

The experiments to synchronize each compound scenario
were conducted as follows. First, for each 7-month period,
the initial versions of business and ITmodels were recovered
from the repository and remodeled on the tool. Second, all
the actual changes were solely made on the IT side, while
the business view remained intact. Third, the Shared Model
was updated from the IT view (i.e., public and private parts
were synchronized). Finally, the resulting (updated) business
model was compared to the actual corresponding version on
the repository, and also discussed with BNB specialists.

This way we ensured that each extra scenario was a poten-
tial concrete case for synchronization. Table 7 summarizes
the results we obtained.We discuss them in the next Sect. 5.7.

5.7 Discussion of results

Single Edit Scenarios

All the single edit patterns, commonly used by BNB spe-
cialists to create IT process models out of their Business
specifications, were successfully synchronized by the shared
model tool. The following factors contribute to this result:

• Single edit patterns produce small impact the number
of model elements affected by a single edit pattern is
small (e.g., 1–3 tasks). Changes produced by single edit
patterns are well localized and affect few model element
dependencies.

• Some edits are private a private edit does not (initially)
affect the other model. However, it is critical for the syn-
chronization mechanism to keep track of such private
parts. This way the tool can correctly propagate a public
change, especially when it has dependencies (e.g., flow
connections) on private model elements.

123

www.manaraa.com

Supporting different process views 1223

Table 5 Evaluation results, single refinements

Scenario Edit Pattern Instance of (see
“Appendix”)

Result Comments Issues

1 Add manual task CP2 Success Manual task and corresponding incoming and outgoing
flows were correctly updated on the Business view only

–

2 Change activity name CP7 Success New name was correctly updated on the Business view
only

–

3 Simplify selection into task CP10 Success Selection of fine-grained changes was correctly simpli-
fied into a single task on the Business view

–

4 Add properties CP1 Success Specific properties were correctly updated on the IT
view only

–

5 Add script task CP3 Success Script task and corresponding incoming and outgoing
flows were correctly updated on the IT view only

–

6 Add script task CP3 Success Script task and corresponding incoming and outgoing
flows were correctly updated on the IT view only

–

7 Add protocol task CP4 Success Protocol tasks and corresponding incoming and outgo-
ing flows were correctly updated on the IT view only

–

8 Add protocol task CP4 Success Protocol task and corresponding incoming and outgoing
flows were correctly updated on the IT view only

–

9 Add boundary event CP5 Success Event, flow, and task were correctly updated on the IT
view only

–

10 Add technical exception flow CP6 Success Event, flow, and task were correctly updated on the IT
view only

–

11 Add technical exception flow CP6 Success Event, flow, and task were correctly updated on the IT
view only

–

12 Change activity type CP8 Success New type was correctly updated on the Business view
only

–

13 Refine task into fragment CP10 Success Taskwas correctly refined into a fragment of other activ-
ities, using the refactoring method provided by the tool

–

14 Suppress specification activity CP9 Success Task and flowswere correctly removed from the IT view
only

–

15 Split task into block CP10 Success Selection of activities was correctly simplified into a
single task on the Business view

Layout

16 Refine task into subprocess CP11 Success Task was correctly refined into a subprocess of other
activities, using the refactoring method provided by the
tool

–

17 Refine task into subprocess CP11 Success Taskwas correctly refined into a fragment of other activ-
ities, using the refactoring method provided by the tool

–

18 Refactor gateway CP12 Success New activities added and modified flows were correctly
updated on the IT view

–

19 Add business-relevant task to
Business

CP3 Success Business-relevant task and its corresponding incoming
and outgoing flows were correctly updated on the Busi-
ness view, and propagated to the IT view as well

Layout

20 Suppress specification activity CP9 Success Gateway, tasks, and flows were correctly removed on
the IT view only

–

21 Add business-relevant task to IT CP3 Success Business-relevant task and its corresponding incoming
and outgoing flows were correctly updated on the IT
view, and correctly propagated to the Business view as
well

Layout

22 Split task into block CP10 Success Deleted task and other activities added were updated on
the IT view and changes were correctly propagated to
the Business view as well

Layout

23 Refactor gateway CP12 Success New activities added and modified flows were correctly
updated on the IT view, and propagated to the Business
view as well

Layout

123

www.manaraa.com

1224 J. Küster et al.

Table 6 Evaluation scenarios: compound refinement patterns

Scenario Period Number of
changes (IT)

Private (%) Public (%) Added Removed

Tasks Flows Events Gateways Tasks Flows Events Gateways

24 May/09–Nov/09 27 30 70 83 116 19 41 – – – –

25 Dec/09–Jun/10 23 48 52 12 22 8 6 – – – –

26 Jul/10–Jan/11 15 67 33 10 8 – – 3 16 5 2

27 Feb/11–Aug/11 10 70 30 5 14 – – 5 18 4 2

28 Sep/11–Mar/12 19 73 27 14 30 – 2 – – 2 –

29 Apr/12–Oct/12 8 60 40 7 14 – – – – – –

30 Nov/12–May/13 6 83 17 3 6 – – 1 3 1 –

Table 7 Evaluation results, compound refinements

Scenario Result Comments Issues

24 Success All changes were correctly synchronized.
A consistent business view was generated

Layout. Some sequence flows
were broken

25 Success All changes were correctly synchronized.
A consistent business view was generated

Layout. Some sequence flows
were broken

26 Success All changes were correctly synchronized.
A consistent business view was generated

Layout. Some sequence flows
were broken

27 Success All changes were correctly synchronized.
A consistent business view was generated

Layout. Some sequence flows
were broken

28 Success All changes were correctly synchronized.
A consistent business view was generated

Layout

29 Success All changes were correctly synchronized.
A consistent business view was generated

Layout. Some sequence flows
were broken

30 Success All changes were correctly synchronized.
A consistent business view was generated

Layout

Some edit synchronizations (15, 19, 21, 22 and 23)
caused broken layout of the synchronized views, such as
new model elements overlapping pre-existing ones and
sequence flows being entangled. Such cases require man-
ual adjustments on the views to make them visually clean.
Although BNB specialists considered this a minor issue,
they pondered that this may become a tedious task in
practice.

Compound Edit Scenarios

To deal with the scenarios combining multiple edit patterns,
we needed to divide the synchronization in two parts: one
collecting all public changes, and another collecting all the
private ones.

For each change period shown in Table 6 we performed
the following steps (Fig. 8 shows an overview):

1. Recovered the initial and final versions of both business
and IT models;

Process
Model
(IT1)

Process
Model

(B)

Process
Model

(IT)

Process
Model

(B)

op1

=

op2

…

…
Process
Model
(IT’)

Process
Model

(B’)

Process
Model
(IT2)

Process
Model

(B)

=

Shared
Process
Model

BulkPut Public,
BulkPut Private

Get

Compute the diff (edit script) between IT’ and IT; Individually annotate public
and private changes on IT’

Unchanged model Updated model

Fig. 8 Synchronization of compound edits

2. Computed the diff (i.e., an edit script showing all
inserted, deleted, or updated model elements) between
the two versions of the IT model [23];

3. Manually decided which parts were private IT changes
and which were public (IT and business changes). We

123

www.manaraa.com

Supporting different process views 1225

counted on help from BNB specialists to recover such
information from the change request log, documentation,
and their own expertise regarding the models.

4. Replayed all the public changes in the IT model and
pushed the updates to the shared model;

5. Replayed all the private changes in the IT model and
pushed the updated to the shared model;

6. Obtained an updated view of the business model;
7. Compared the updated view with the current (final) ver-

sion of the business model on the repository.

The third step (above) was the most laborious and time-
consuming. We needed to count on domain knowledge from
BNB specialists to precisely distinguish which individual
edits were public or private. That distinction was only possi-
ble by also inspecting the change request log, which contains
textual descriptions of each change, and also the project’s
documentation.

All compound scenarios were correctly synchronized,
and a consistent business view was eventually produced,
as shown in the Table 7. Some issues were occasionally
observed in the generated business view: broken layout (as
the aforementioned entangled flows and overlapping model
elements) andmissing sequenceflows. The later does not rep-
resent a problem with the synchronization mechanism, but
rather requires improving the current heuristic implemented
by the prototype to infer graph dependencies (sequence
flows) between public and private parts. Figure 9 shows an
example of inferred sequence flow between Task X and Task
Z on the business side, after synchronizing all public and
private changes in the IT side.

Concurrent Changes

As explained in the Sect. 3.2, the current prototype does not
deal with cases where both views are changed concurrently.
Such cases would need comparing and merging different
instances of the shared model, as shown in the Fig. 10. We
plan to further study this problem as future work.

We conclude the discussion by answering our initial eval-
uation questions:

Q1 How successfully can the tool synchronize typical
Business-to-IT process modeling edit patterns?

The toolwas able to dealwellwith all the evaluated scenar-
ios from BNB, when synchronizing after each edit pattern.
However, since the evaluation relies on data from a single
company, additional experiments with data from other orga-
nizations is needed to strengthen this result.

Q2Howsuccessfully can the tool synchronize scenarios com-
posed of multiple edit patterns?

In its current version, the tool can deal with scenarios
where multiple edits need to be synchronized at once, as

Task A Task X Task B

Task Z

Conditional
event

Task Y
(Private)

Task A Task X
(Public)

Task B

Task Z
(Public)

IT

Business

Fig. 9 Public and private synchronization dependencies

Shared
Process
Model

3
Shared
Process
Model

2
Merge 1 & 2

Shared
Process
Model

1

Process
Model

(IT)Put

Put

teGteG

Process
Model

(B)

Process
Model

(B’)

Process
Model

(IT’)

Fig. 10 Synchronization of concurrent changes

long as it is possible to distinguish between public and private
individual edits. Manually performing such task is, however,
a painstaking and time-consuming effort. More research is
necessary to understand how such mechanism for dealing
with intertwined types of changes, during the development
process, could be built.

Q3 Are there recommended best practices in using the tool,
such that they could ensure consistency between Business
and IT views?

Yes. The tool can ensure consistent Business and IT views
if the development process enforces that each occurrence of
a refinement pattern performed in either model is synchro-
nized as soon as it occurs. This approach avoids the problem
discussed in the previous question. However, assessing the
feasibility of this approach in industrial practice requires fur-
ther research.

5.8 Threats to validity and lessons learned

Many tool evaluations suffer from limitations, such as the
number of subjects not being representative of the entire
population, the differences between development methods
employed across different organizations, and soon.This eval-
uation is subject to three main limitations:

123

www.manaraa.com

1226 J. Küster et al.

• The limited number of evaluation scenarios It is difficult
to obtain data to drive research in the domain of process
modeling. For example—to the best of our knowledge—
there are no available open source projects featuring
business-level specifications and their IT-level imple-
mentations. Also, companies which adopt such technolo-
gies usually consider process artifacts extremely sensitive
and confidential. We obtained access to people and arti-
facts from BNB. However, mining the artifact repository,
the change log, and remodeling the project and change
scenarios was a laborious and time-consuming effort.
Such tasks were only possible with help from several
BNB technicians and managers.

• The artifacts come from a single company (domain)
Clearly, different development processes and organiza-
tional cultures will likely lead to different results.

• The evaluation relied on subjective and relatively quick
assessments of the BNB specialistsWhile the correspon-
dence and edit patterns are grounded in the studied arti-
facts, assessments of consistency are based on subjective
perceptions of the participating specialists.

Although the observed results are very promising, it is
important to note that (in practice) theremay existmany other
types of organization-, domain-, or even project-specific edit
patterns. Clearly, there may also exist many test cases where
the context (dependencies) of themodel elements affected by
an editmay lead to synchronization failures.We do not intend
to claim that the tool (in its current version) can successfully
synchronize all types of changes.

6 Related work

We build on prior work [20] on comparing and merging
processmodels on the same abstraction level. Ourwork deals
with changes ofmodels on different abstraction level and dis-
tinguishes between public and private changes.

Synchronizing a pair of models connected by a correspon-
dence relation is an instance of a symmetric delta lens [24].
In a symmetric delta lens, both models share some informa-
tion, but also have some information private to them. Deltas
are propagated by translation, which has to take the original
and the updated source including the relation between them
and original targetmodel including the correspondence to the
original source as a parameter. Symmetric delta lenses gen-
eralize the state-based symmetric lenses by Pierce et al. [25].
In recent years, various techniques have been developed for
synchronization of models. Popular approaches are based on
triple graph grammars (e.g., Giese et al. [8]). In contrast to
these approaches, our idea of explicitly marking private ele-
ments is novel.

In the area of model-driven engineering, the problem of
a coupled evolution of a meta-model and models is related
to our problem. Coupled evolution has recently been studied
extensively (compare Herrmannsdoerfer et al. [7] and Cic-
chetti et al. [26,27]). The problem of coupled evolution of a
meta-model andmodels has similarities to our problemwhere
two or more models at a different abstraction level evolve.
One key difference is that in our application domain we hide
private changes and that we allow changes in both levels to
occur, which then need to be propagated. In contrast to Her-
rmannsdoerfer et al., we aim at complete automation of the
evolution. Due to the application domain, we focus on com-
pound operations and also translate the parameters accord-
ing to the correspondences. Overall, one could say that our
solution tries to solve the problem in a concrete application
domain, whereas other work puts more emphasis on generic
solutions which can be applied to different application
domains. However, the immediate applicability and effec-
tiveness of the more general approaches in this more specific
context are not clear. In fact, such general approaches would
need to be refined with many of the topics we discussed, such
as the different types of consistency and change patterns.

On an even more general level, (in)consistency manage-
ment of different views has been extensively studied in recent
years by many authors (e.g., Finkelstein et al. [28], Egyed et
al. [29]). The goal of theseworks is to define andmanage con-
sistency of different views where views can be diverse soft-
ware artefacts including models. As stated earlier, our prob-
lem can be viewed as one instance of a consistency problem.
In contrast, we focus on providing a practical solution for a
specific application domainwhich puts specific requirements
into place such as usability and hiding of private changes.

In the area of process modeling, Weidlich et al. [30] have
studied vertical alignment of process models, which brings
models to the same level of abstraction. They also discuss
an approach for automatic identification of correspondences
between processmodels. Buchwald et al. [31] study theBusi-
ness and ITGap problem in the context of processmodels and
introduce the Business IT Mapping Model (BIMM), which
is very similar to our correspondences. However, they do not
describe how this BIMM can be automatically maintained
during evolution. Tran et al. [13] focus on integration ofmod-
eling languages at different abstraction levels in the context
of SOA Models, but they do not focus on the closing the
business IT gap as we do. Werth et al. [32] propose a busi-
ness service concept in order to bridge the gap between the
process layer and the technical layer; however, they do not
introduce two abstraction layers of process models. Thomas
et al. [33] on the other hand distinguish between different
abstraction layers of process models and also recognize the
need of synchronizing the layers, but they do not provide
techniques for achieving the synchronization.

123

www.manaraa.com

Supporting different process views 1227

Various authors have proposed different forms of abstrac-
tions from a process model, called a process view, e.g., [34].
A process view can be recomputed whenever the underlying
process model changes. Recently, Kolb et al. [11] have taken
the idea further to allow changes in the process view that
can be propagated back to the original process model, which
can be considered as a model synchronization. They restrict
to hierarchical abstractions of control flow in well-formed
process models.

7 Conclusion

Different process model views are important to reflect differ-
ent concerns of different process stakeholders. Because their
concerns overlap, a change in one view must be synchro-
nized with all other overlapping views in order to facilitate
stakeholder collaboration.

In this paper, we have presented detailed requirements for
process model view synchronization between business and
IT views that pose a significant technical challenge for its
realization. These requirements were derived from a larger
industrial case study [2] and additional interviews with BPM
practitioners. A central intermediate step was the systematic
categorization of changes from business to IT level given
in Sect. 2.1. We have also presented our solution design and
reported first results of its implementation to demonstrate the
feasibility of our approach.

We report on a substantial evaluation using an industrial
case study, which investigated the tool in 23 single edit pat-
tern scenarios and seven compound ones. The evaluation
revealed strengths and current limitations of the approach.

Suggestions for future work include improving the syn-
chronization of compound scenarios, aswell as handling con-
current changes. Such improvements require further research
and case studies. Also, not all elements of the BPMN meta-
model are currently synchronized but only the main ones. In
particular, the synchronization of the layout information of
the models was not yet addressed and requires further work.

Acknowledgments We would like to thank the Bank of the Northeast
of Brazil (Banco do Nordeste – BNB) for granting us full access to
people and artifacts, fundamental for conducting the evaluation of the
approach. This work was partially supported by an IBM Ph.D. CAS
Fellow Scholarship, the Ontario Research Fund’s Research Excellence
Project on Model-Integrated Software Service Engineering.

Appendix

In this appendix, we summarize the correspondence patterns
(CPs) described in previous work [2]. All correspondence
patterns are illustrated by an ATM system example shown in

Fig. 11. More details can also be found in a technical report
[35].

CP1: add properties

Description Parameters for grounding the executable model
on top of the underlying IT infrastructure are added during
the implementation.
Motivation Several properties of tasks, gateways, flows,
events, etc., are added to the implementation-level model,
such as application or serviceURLs, protocol types (e.g., http
or https), transactional behavior (e.g., commit before, com-
mit after, participates, etc.). Such properties do not change
the workflow and may be tool or platform-specific.
Example Each ISO8583 sending or receiving task shown in
Fig. 11 (e.g., Identify Customer Card 9300 and Get Card
Identification 9310) has parameters that include the message
queue, authentication method, security protocol, and mes-
sage encoding.

CP2: add manual task

Description Some tasks on the business side are not subject
to automation.
Motivation Manual tasks are used for non-automated (typi-
cally human-performed) actions of a process, such as trans-
porting assets via postal service, stowing retrieval, visual
inspection, etc. Manual tasks are commonly used solely on
the business view, since they have no counterpart on the com-
pany’s IT infrastructure.
Example A credit process can contain a task to send a hard
copy of a contract to the customer, via postal service.

CP3: add script task

Description Script tasks are used to initialize variables and
implement business rules and non-functional requirements
that access or transform business objects data, e.g., logging
steps of the workflow.
Motivation This type of task is frequently used because it
has significantly better performance than calling external ser-
vices.
Example Figure 12 shows a task created in the ATM applica-
tion for initializing several parameters of a transactionobject,
which controls user actions across the workflow. Such kind
of task in the IT model does not have any correspondence in
the business model.

CP4: add protocol task

Description An asynchronous service can be implemented
by a connectionless request or reply protocol.

123

www.manaraa.com

1228 J. Küster et al.

C
us

to
m

er

In
se

rts
 C

ar
d

in
to

 A
TM

Id
en

tif
y

C
us

to
m

er
 C

ar
d

C
ar

d
is

Va
lid

?

C
us

to
m

er

Se
le

ct
s

Tr
an

sa
ct

io
n

Ye
s

C
us

to
m

er

Pr
ov

id
es

Tr

an
sa

ct
io

n
D

et
ai

ls

C
us

to
m

er

Pr
ov

id
es

 P
IN

Va
lid

at
e

PI
N

PI
N

 is

Va
lid

?

Pr
oc

es
s

W
ith

dr
aw

C
on

su
lt

Ba
la

nc
e

C
on

su
lt

St
at

em
en

t
At

te
m

pt
s

<=
 3

?

Ye
s

C
an

ce
l

Tr
an

sa
ct

io
n

N
o

N
o

C
on

clu
de

Tr

an
sa

ct
io

n

Ye
s

N
o

(a
)

Id
en

tif
y

C
us

to
m

er
 C

ar
d

C
ar

d
is

Va
lid

?

Ye
s

C
us

to
m

er

Pr
ov

id
es

Tr

an
sa

ct
io

n
D

et
ai

ls

C
us

to
m

er

Pr
ov

id
es

 P
IN

D
ue

 to

PI
N

?

N
o

Pr
oc

es
s

W
ith

dr
aw

C
on

su
lt

Ba
la

nc
e

C
on

su
lt

St
at

em
en

t

At
te

m
pt

s
<=

 3
?

Ye
s

C
us

to
m

er
 In

se
rts

C

ar
d

in
to

 A
TM

Tr
an

sa
ct

io
n

C
an

ce
le

d
by

N
o

N
oTr

an
sa

ct
io

n
C

an
ce

le
d

by

Ye
s

Tr
an

sa
ct

io
n

Au
th

or
ize

d?

N
o

C
on

clu
de

Tr

an
sa

ct
io

n

D
eb

it
Ac

co
un

t

Pr
oc

es
s

Pe
nd

in
g

D
eb

it

Pr
oc

es
s

Pe
nd

in
g

Tr
an

sa
ct

io
n

C
an

ce
l

Tr
an

sa
ct

io
n

Au
th

or
ize

Tr

an
sa

ct
io

n

C
us

to
m

er
C

us
to

m
er

(b
)

Id
en

tif
y

C
us

to
m

er
 C

ar
d

93
00

C
ar

d
is

Va
lid

?

Ye
s

C
us

to
m

er

Pr
ov

id
es

Tr

an
sa

ct
io

n
D

et
ai

ls

C
us

to
m

er

Pr
ov

id
es

 P
IN

D
ue

 to

PI
N

?

.

N
o

D
isp

en
se

C

as
h

Pr
in

t
Ba

la
nc

e

Pr
in

t
St

at
em

en
t

At
te

m
pt

s
<=

 3
?

Ye
s

G
et

 C
ar

d
Id

en
tif

ica
tio

n
93

10

In
itia

liz
e

Tr
an

sa
ct

io
n

Pa
ra

m
et

er
s

C
us

to
m

er
 In

se
rts

C

ar
d

in
to

 A
TM

Tr
an

sa
ct

io
n

C
an

ce
le

d
by

C
an

ce
l T

ra
ns

ac
tio

n

N
o

D
isp

la
y

C
an

ce
lin

g
M

es
sa

ge

C
an

ce
l T

ra
ns

ac
tio

n

C
he

ck

Tr
an

sa
ct

io
n

Ta
bl

e

Su
sp

ec
t o

f F
ra

ud
?

Se
nd

 S
ec

ur
ity

N

ot
ific

at
io

n
Ye

s

U
pd

at
e

Tr
an

sa
ct

io
n

Ta
bl

e

N
o

Tr
an

sa
ct

io
n

C
an

ce
le

d
by

Au
th

or
ize

W

ith
dr

aw
02

00

R
eq

ue
st

Ba

la
nc

e
90

00

R
eq

ue
st

St

at
em

en
t

90
00

C
an

ce
l

C
an

ce
l

G
et

Au

th
or

iza
tio

n
02

10

G
et

Ba
la

nc
e

90
10

G
et

St
at

em
en

t
90

10

C
an

ce
l

Ye
s

Tr
an

sa
ct

io
n

Au
th

or
ize

d?

Pr
oc

es
s

Tr
an

sa
ct

io
n

8s

Ti
m

eo
ut

8s

Ti
m

eo
ut

N
o

C
on

clu
de

Tr

an
sa

ct
io

n

Se
nd

C

om
pl

et
io

n
C

on
fir

m
at

io
n

02
02

Ye
s

D
eb

it
Ac

co
un

t

Ad
d

Pe
nd

in
g

D
eb

it
R

eb
at

e
Fe

e
C

ha
rg

e
N

o

C
us

to
m

er
C

us
to

m
er

(c
)

F
ig
.
11

A
T
M

pr
oc
es
s
m
od
el
s.
a
B
us
in
es
s
sp
ec
ifi
ca
tio

n,
b
te
ch
ni
ca
ls
pe
ci
fic

at
io
n,

c
ex
ec
ut
ab
le
pr
oc
es
s

123

www.manaraa.com

Supporting different process views 1229

Fig. 12 Add script task
Initialize

Transaction
Parameters

Identify
Customer Card

(a)

Identify
Customer Card

9300

Get Card
Identification

9310

(b)

Fig. 13 Add protocol task. a Business and technical specifications,
b executable

Motivation It is common to implement a business task by
using an asynchronous connectionless service. In such cases,
the protocol needs to compose and send a message and, after
that, wait for a response.
Example Figure 13 shows an example where the business
task Identify Customer Card is implemented on top of the
ISO8583 protocol by sending a identification request mes-
sage (9300) and waiting for a validation message (9310).

CP5: add boundary event

Description Boundary events are used to divert the nor-
mal flow under special conditions, for example, because of
a particular action performed by the operator on a human
task.
Motivation The reason to divert the flow can be merely
technical or too low level to be represented in the busi-
ness model. Such conditions can be implemented as result
of requirements and use cases that describe a human task in
detail.
Example Figure 14 depicts an example of boundary event
added to human tasks to capture the customer’s decision to
cancel the transaction at any time. Another example can be
seen in Fig. 11, where boundary events were added to asyn-
chronous receiving tasks (e.g.,Get Statement 9010) to cancel
the transaction in the case of a timeout of 8s.

CP6: add technical exception flow

Description Technical exception flows are included to divert
the flow in case of technical exceptions, such as an unavail-
able service or a permission denied.
Motivation Technical exceptions are not expected to be rep-
resented in the business model, because they implement non-

Fig. 14 Add boundary event.
a Business specification,
b technical and executable

Customer
Provides

Transaction
Details

(a)

Customer
Provides

Transaction
Details

Transaction
Canceled by
Customer

(b)

Consult
Balance

(a)

Consult
Balance

Print
Balance

(b)

Fig. 15 Add technical exception flow. aBusiness specification, b tech-
nical and executable

functional requirements elicited during the elaboration phase
of the development process.
Example Figure 15 shows examples of technical exceptions
flows added for dealing with service errors, in which the
transaction parameters are saved and the system administra-
tor is notified to complete the transaction later.

CP7: change activity name

Description The name of a business activity can be changed
to facilitate the identification of an IT service that has a sim-
ilar but different name.
Motivation IT specialists can decide to use technical names
in model elements for facilitating maintenance.
Example Figure 16 shows an example.

CP8: change activity type

Description The type of a model element can be changed
because of an implementation decision.

123

www.manaraa.com

1230 J. Küster et al.

Fig. 16 Change activity name.
a Business and technical
specifications, b executable Consult

Statement

(a)

Print
Statement

(b)

Fig. 17 Change activity type. a
Business specification, b
technical and executable

Customer
Insert Card
into ATM

(a)

Customer Insert
Card into ATM

(b)

Motivation It is easier for business people to stick with basic
modeling constructs (such as plain tasks andgateways),while
other types ofmodel elements aremore suitable to implement
the business intent.
Example Figure 17 shows an example were a human task
represented in the business model was implemented by an
event.

CP9: suppress specification activity

Description Business elements can be suppressed during the
implementation.
Motivation Some elements of the business specification may
be considered redundant, not subject to automation, or sub-
sumed by a particular task at the implementation level. Typ-
ical cases for observing this pattern are:

• Combine several business tasks into a single service call
(the service provided is coarser than the business steps
described),

• Combine human tasks into a single human task, with the
separate steps of the human task being described else-
where as a screenflow, for example.

• Ignore manual business tasks, for example, “Send con-
tract to the post office.”

Example Figure 18 shows a case where the two human tasks
described in the business model were collapsed into a single
human task in the technical and implementation levels.

Customer
Selects

Transaction

Customer
Provides

Transaction
Details

(a)

Customer
Provides

Transaction
Details

(b)

Fig. 18 Suppress specification activity. a Business specification, b
technical and executable

Authorize
Transaction

(a)

Authorize
Withdraw

0200

Request
Balance

9000

Request
Statement

9000

Get
Authorization

0210

Get
Balance

9010

Get
Statement

9010

(b)

Fig. 19 Split task into block. a Technical specification, b executable

CP10: split task into block

Description A single business task can be implemented by a
combination of services.
Motivation To implement a specification task, it may be nec-
essary to combine several existing services, including addi-
tional control flow logic to organize the way the services
should be called to achieve the specified functionality.
Example Figure 19 illustrates such scenario, where a tech-
nical specification task, Authorize Transaction, is split into
a block of ISO8583 service calls, organized as an exclusive
gateway that controls the type of authorization required for
each transaction type.

CP11: split workflow

Description The specification workflow can be split into
smallerworkflows that should be orchestrated by amain flow.

123

www.manaraa.com

Supporting different process views 1231

Cancel
Transaction

(a)

Cancel Transaction

Check
Transaction

Table

Suspect of Fraud?

Send Security
Notification

Yes

Update
Transaction

Table

No

(b)

Fig. 20 Split workflow. aBusiness and technical specifications, b exe-
cutable

Fig. 21 Refactor gateway. a
Business specification, b
technical and executable

PIN is
Valid?

Yes

No

(a)

Due to
PIN?

Yes

Transaction
Authorized?

No

Yes

No

(b)

Motivation The typical reason for this pattern is the creation
of specialized and reusable workflows, such as for logging
and auditing purposes.
Example In Fig. 20, the task Cancel Transaction was imple-
mented by a specialized subflow that includes fraud control
and is reused by other projects. It is common to use web ser-
vice interfaces or event triggering for calling the subflows.

CP12: refactor gateway

DescriptionAbusiness-level gatewaymay need to be refined
to take into account the technical behavior of the services
involved.
Motivation IT services may impose constraints on the con-
trol flow. For example, the business model may specify tasks
executing in parallel; however, in the implementation the cor-
responding IT services are called in sequence to avoid dead-
locks.
Example Figure 21 shows an example where the business
specification has a rule for checking the maximum number
of times that a customer can enter a wrong PIN. In the actual
implementation, checking the validity of the PIN is a partic-
ular result of the transaction authorization. In this particular
project, some of the other cases where the transaction is not
authorized are also relevant to the business (e.g., insufficient

funding). However, since the business analysts did not know
how the systemswere implemented, they specified such cases
as part of business rules of three business tasks: Process
Withdraw, Consult Balance, and Consult Statement. Busi-
ness rules documents are produced together with business
process models. The business analysts did not consider nec-
essary to change the business model to approximate it to the
actual system, atwhichpoint theworkflowsbecamedifferent.

References

1. Recker, J., Mendling, J.: On the translation between bpmn and
bpel: conceptual mismatch between process modeling languages.
In: Proceedings of 11th InternationalWorkshop onExploringMod-
eling Methods in Systems Analysis and Design, 2006

2. Branco, M.C., Xiong, Y., Czarnecki, K., Küster, J., Völzer, H.: A
case study on consistency management of business and IT process
models in banking. Software and Systems Modeling, March 2013

3. Weidlich,M., Barros, A.P.,Mendling, J.,Weske,M.: Vertical align-
ment of process models—how canwe get there? In: Proceedings of
Enterprise, Business-Process and Information Systems Modeling,
10th International Workshop, BPMDS 2009, ser. Lecture Notes
in Business Information Processing, vol. 29, pp. 71–84. Springer,
Berlin (2009)

4. Weidlich, M., Decker, G., Weske, M., Barros, A.: Towards
vertical alignment of process models—a collection of mismatches.
Hasso Plattner Institute, Tech. Rep., 2008. [Online]. http://bpt.
hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/collection_of_
mismatches.pdf

5. DeCastro,V.,Marcos, E.,Wieringa, R.: Towards a service-oriented
MDA-based approach to the alignment of business processes with
it systems: from the business model to a web service composition
model. Int. J. Coop. Inf. Syst. 18(2), 225–260 (2009). [Online].
http://doc.utwente.nl/68172/

6. Luftman, J., Papp, R., Brier, T.: Enablers and inhibitors of business-
IT alignment. Commun. AIS, vol. 1, March 1999. [Online]. http://
portal.acm.org/citation.cfm?id=374122.374123

7. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: Cope - automating
coupled evolution ofmetamodels andmodels. In: Drossopoulou, S.
(ed.) ECOOP, ser. Lecture Notes in Computer Science, vol. 5653,
pp. 52–76. Springer, Berlin (2009)

8. Giese, H., Wagner, R.: From model transformation to incremen-
tal bidirectional model synchronization. Softw. Syst. Model. 8(1),
21–43 (2009)

9. Diskin, Z.:Model synchronization:mappings, tiles, and categories.
In: Proceedings of the 3rd international summer school conference
on generative and transformational techniques in software engi-
neering III, ser. GTTSE’09, pp. 92–165. Springer, Berlin (2011).
[Online]. http://portal.acm.org/citation.cfm?id=1949925.1949929

10. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of hetero-
geneous models for global consistency checking. In: Proceedings
of the first international workshop on model-driven interoperabil-
ity, ser. MDI ’10, pp. 42–51. ACM, New York (2010). [Online].
doi:10.1145/1866272.1866279

11. Kolb, J., Kammerer, K., Reichert, M.: Updatable process views
for user-centered adaption of large process models. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC, ser. Lecture Notes
in Computer Science, vol. 7636, pp. 484–498. Springer, Berlin
(2012)

12. Küster, J.M., Völzer, H., Favre, C., Branco, M.C., Czarnecki, K.:
Supporting different process views through a shared processmodel.

123

http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/collection_of_mismatches.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/collection_of_mismatches.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/collection_of_mismatches.pdf
http://doc.utwente.nl/68172/
http://portal.acm.org/citation.cfm?id=374122.374123
http://portal.acm.org/citation.cfm?id=374122.374123
http://portal.acm.org/citation.cfm?id=1949925.1949929
http://dx.doi.org/10.1145/1866272.1866279

www.manaraa.com

1232 J. Küster et al.

In: 9th EuropeanConference onModelling Foundations andAppli-
cations, ECMFA, 2013, pp. 20–36

13. Tran, H., Zdun, U., Dustdar, S.: View-based integration of process-
driven SOA models at various abstraction levels. In: Kutsche, R.-
D., Milanovic, N. (eds.) 1st International Workshop on Model-
Based Software and Data Integration. Springer, Berlin (2008)

14. Winkler, S., vonPilgrim, J.:A surveyof traceability in requirements
engineering and model-driven development. Softw. Syst. Model.
9(4), 529–565 (2010)

15. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006)

16. Branco, M., Troya, J., Czarnecki, K., Küster, J.M., Völzer, H.:
Matching business process workflows across abstraction levels. In:
France, R. B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)MoDELS,
ser. Lecture Notes in Computer Science, vol. 7590, pp. 626–641.
Springer, Berlin (2012)

17. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency mea-
surement based on behavioural profiles of process models. IEEE
Transactions onSoftwareEngineering, vol. 99, no. PrePrints (2010)

18. Bergstra, J.A.: The Linear time — branching time spectrum I. The
semantics of concrete, sequential processes. In: Ponse, A., Smolka,
S.A. (eds.)HandbookofProcessAlgebra,Chap. 1.Elsevier Science
Inc., New York (2001)

19. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused
control-flow analysis for business process models through SESE
decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007, ser. LNCS, pp. 43–55. Springer, Berlin (2007)

20. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and
resolving process model differences in the absence of a change
log. In: Dumas, M., Reichert, M. (eds.) BPM’08, ser. LNCS, vol.
5240, pp. 244–260. Springer, Berlin (2008)

21. Favre, C., Küster, J., Völzer, H.: Recorded demo of shared
process model prototype. http://researcher.ibm.com/view_project.
php?id=3210

22. OMG, Business process model and notation (BPMN) version 2.0,
omg document number dtc/2010-05-03, Tech. Rep., 2010

23. Branco, M.C., Wider, A.: Generating preliminary edit lenses from
automatic pattern discovery in business process modeling. In:
CAiSE Forum, 2013, pp. 65–72

24. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Ore-
jas, F.: From state- to delta-based bidirectional model transforma-
tions: the symmetric case. In:MoDELS, ser. LectureNotes inCom-
puter Science, vol. 6981, pp. 304–318. Springer, Berlin (2011)

25. Hofmann,M., Pierce, B.,Wagner, D.: Symmetric lenses. In: POPL.
ACM, pp. 371–384 (2011)

26. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing dependent
changes in coupled evolution. In: Paige, R.F. (ed.) ICMT, ser. Lec-
ture Notes in Computer Science, vol. 5563, pp. 35–51. Springer,
Berlin (2009)

27. Cicchetti, A., Ciccozzi, F., Leveque, T.: A solution for concurrent
versioning of metamodels and models. J. Object Technol. 11(3),
1–32 (2012)

28. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh,
B.: Inconsistency handling in multi-perspective specifications. In:
ESEC, ser. Lecture Notes in Computer Science, vol. 717, pp. 84–
99. Springer, Berlin (1993)

29. Egyed, A.: Instant consistency checking for the UML. In: ICSE
2006, pp. 381–390. ACM, New York (2006)

30. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework:
identification of correspondences between process models. In:
CAiSE, ser. LNCS, vol. 6051, pp. 483–498. Springer, Berlin (2010)

31. Buchwald, S., Bauer, T., Reichert, M.: Bridging the gap between
business process models and service composition specifications.
Methods, Trends and Advances, Int’l Handbook on Service Life
Cycle Tools and Technologies (2011)

32. Werth, D., Leyking, K., Dreifus, F., Ziemann, J., Martin, A.:
Managing SOA through business services—a business-oriented
approach to service-oriented architectures. In: ICSOCWorkshops,
ser. Lecture Notes in Computer Science, vol. 4652, pp. 3–13.
Springer, Berlin (2006)

33. Thomas, O., Leyking, K., Dreifus, F.: Using process models for
the design of service-oriented architectures: methodology and e-
commerce case study. In: HICSS. IEEE Computer Society, 2008,
p. 109

34. Schumm, D., Leymann, F., Streule, A.: Process viewing patterns.
In: EDOC. IEEE Computer Society, 2010, pp. 89–98

35. Branco, M., Xiong, Y., Czarnecki, K., Küster, J., Völzer, H.: An
empirical study on consistency management of business and IT
process models”, Generative Software Development Laboratory,
University of Waterloo, Technical Report GSDLAB-TR 2012–03-
22, 2012, accepted for publication in Software and Systems Mod-
eling, draft available at http://gsd.uwaterloo.ca/reportstudybpm

Jochen Küster studied com-
puter science with mathemat-
ics at the University of Pader-
born, Paderborn, Germany, with
stays at University College Lon-
don, UK, and Carleton Univer-
sity, Canada. He received the
degree of Diplom-Informatiker
and the Ph.D. degree, from the
University of Paderborn in 2000
and March 2004, respectively.
From 2004 until 2013, he was
with the Zurich Research Labo-
ratory, IBM Research Division,
Switzerland. In September 2013,

he was appointed Professor of Business Informatics at Bielefeld Uni-
versity of Applied Sciences, Germany. He is the author of more than 50
peer-reviewed publications in the area of model-driven development,
model transformations, and business process modeling.

Hagen Völzer received his mas-
ter (1995) and doctoral
(2000) degrees in computer sci-
ence from Humboldt-University
Berlin, Germany. He has been
a research fellow at the Soft-
ware Verification Research Cen-
tre at the University of Queens-
land, Australia (2001–2003), and
a senior research and teach-
ing associate at the Univer-
sity of Lübeck, Germany (2003–
2007). He joined IBM Research
in March 2007. With business
process management (BPM) as

his current research focus, he is interested in all aspects of process
modeling, analysis, refinement, execution, and monitoring as well as
in related topics such as consistency-, configuration-, and change man-
agement for processes. He has contributed to and co-authored the OMG
standard BPMN 2.0.

123

http://researcher.ibm.com/view_project.php?id=3210
http://researcher.ibm.com/view_project.php?id=3210
http://gsd.uwaterloo.ca/reportstudybpm

www.manaraa.com

Supporting different process views 1233

CédricFavre receivedhisM.Sc.,
in Computer Science from the
Swiss Federal Institute of Tech-
nology in Lausanne (EPFL) in
2008. He then became a Ph.D.,
student at IBMResearch, Zurich,
and at the Swiss Federal Insti-
tute of Technology in Zurich
(ETHZ), where he successfully
defended his PhD thesis in
September 2014. His research
focuses on static analysis tech-
niques and tools allowing a user,
with no verification background,
to detect, locate, understand, and

repair control-flow errors in business process models.

MoisésCasteloBranco received
hismaster degree (1999) inCom-
puter Science from Universidade
Federal do Ceará, Brazil, and his
Ph.D., in Electrical and Com-
puter Engineering (2014) from
University of Waterloo, Canada.
He has been working in industry
for the past two decades perform-
ing major software engineering
roles and currently holds a man-
agerial position atBankofNorth-
east of Brazil (BNB), leading
the Systems Division of Bank-
ing Products and Services.While

atBNB, he also had the opportunity of leading the IT Architecture Team

(2003–2009), when actively participated in the adoption of a SOA/BPM
infrastructure. His research interests focus on consistency management
of software artefacts, includingmatching, traceability, and impact analy-
sis among models that express the same intent at different abstraction
levels, ranging from high-level business specifications to IT executable
models.

Krzysztof Czarnecki is a Pro-
fessor of Electrical and Com-
puter Engineering at the Univer-
sity of Waterloo. Before com-
ing to Waterloo, he was a
researcher at DaimlerChrysler
Research (1995–2002), Germ-
any, focusing on improving soft-
ware development practices and
technologies in enterprise, auto-
motive, space and aerospace
domains. He co-authored the
book on “Generative Program-
ming” (Addison-Wesley, 2000),
which deals with automating

software component assembly based on domain-specific languages.
While at Waterloo, he held the NSERC/Bank of Nova Scotia Indus-
trial Research Chair in Requirements Engineering of Service-oriented
Software Systems (2008–2013) and has worked on a range of topics in
model-driven software engineering, including software-product lines
and variability modeling, consistency management and bi-directional
transformations, and example-driven modeling. He received the Pre-
mier’s Research Excellence Award in 2004 and the British Computing
Society in Upper Canada Award for Outstanding Contributions to IT
Industry in 2008.

123

www.manaraa.com

Software & Systems Modeling is a copyright of Springer, 2016. All Rights Reserved.

	Supporting different process views through a Shared Process Model
	Abstract
	1 Introduction
	2 The business--IT gap problem
	2.1 Why we want different views

	3 Requirements for a Shared Process Model
	3.1 The Shared Process Model concept
	3.2 Usage scenarios and requirements

	4 A technical realization of the Shared Process Model
	4.1 Basic solution design
	4.2 Establishing and maintaining correspondences
	4.3 Business--IT consistency
	4.4 Computing changes between process model versions
	4.5 Evolution of the Shared Process Model
	4.6 Implementation

	5 Evaluation
	5.1 Objectives
	5.2 Subjects
	5.3 Correspondence patterns versus edit patterns
	5.4 Method
	5.5 Results: single refinement patterns
	5.6 Results: compound refinement patterns
	5.7 Discussion of results
	Single Edit Scenarios
	Compound Edit Scenarios
	Concurrent Changes

	5.8 Threats to validity and lessons learned

	6 Related work
	7 Conclusion
	Acknowledgments
	Appendix
	CP1: add properties
	CP2: add manual task
	CP3: add script task
	CP4: add protocol task
	CP5: add boundary event
	CP6: add technical exception flow
	CP7: change activity name
	CP8: change activity type
	CP9: suppress specification activity
	CP10: split task into block
	CP11: split workflow
	CP12: refactor gateway

	References

